

PROGRAMME: B.Tech

SEMESTER /YEAR: IV/ II

SUBJECT CODE: 20ECS2

SUBJECT NAME: Modeling, Design and Prototyping

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (Autonomous)

Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi.

Accredited by NAAC, NBA Tier-1 for CSE, IT, ECE, EEE & ME and "CPE" status by UGC.

L.B.Reddy Nagar, Mylavaram – 521 230, Andhra Pradesh, India.

List of Experiments

- 1. BASIC ARITHMETIC OPERATIONS
- 2. BOOLEAN OPERATIONS
- 3. SUM OF 'n' NUMBERS USING 'FOR' LOOP
- 4. FACTORIAL OF A GIVE NUMBER USING FOR LOOP
- 5. SUM OF 'n' NATURAL NUMBERS USING WHILE LOOP
- 6. FACTORIAL OF A GIVE NUMBER USING WHILE LOOP
- 7. SORTING EVEN NUMBERS USING WHILE LOOP IN AN ARRAY
- 8. ARRAY MAXIMUM AND MINIMUM
- 9. BUNDLE AND UNBUNDLE CLUSTER
 - 10. FLAT AND STACKED SEQUENCE
 - 11. APPLICATION USING FORMULA NODE
 - 12. MEDIAN FILTER
 - 13. DISCRETE COSINE TRANSFORM
 - 14. CONVOLUTION OF TWO SIGNALS
 - 15. WINDOWING TECHNIQUE

BASIC ARITHMETIC OPERATIONS

Aim: To perform basic arithmetic operations using Labview.

Algorithm:

Step 1: Start the Lab view and select the blank VI.

Step 2: Create front and block diagram panel.

Step 3: Numeric controls are given as inputs and numeric indicators are given as output they are selected by right clicking on the front panel.

Step 4: Different arithmetic operators such as addition, subtraction, multiplication and division are generated in block diagram panel.

Step 5: Using wiring operation inputs and outputs are connected to the respective operators in the block diagram panel.

Step 6: Input values are given in the front panel and the program is executed. Hence the output is generated.

Input:

Output:

Result:

Thus the arithmetic operations were performed and the result is verified using Labview.

BOOLEAN OPERATIONS

Aim: To perform Boolean operations using Labview.

Algorithm:

Step 1: Start the Labview and select the blank VI.

Step 2: Create front and block diagram panel.

Step 3: To perform Boolean operation push buttons are taken as inputs and round LED as output.

Step 4: Different Boolean operations such as AND, OR, XOR, NOT, NAND are selected from the block diagram panel.

Step 5: Boolean inputs and outputs are wired in the block diagram panel.

Step 6: Logic values 0 & 1 are given in the front panel and the program is executed.

Input:

Input 1

Input2

Output:

AND

OR

X-OR

NAND

NOT 6

Truth Table:

AND:

X1	X2	Υ
0	0	0
0	1	0
1	0	0
1	1	1

OR:

X1	X2	Υ
0	0	0
0	1	1
1	0	1
1	1	1

XOR:

X1	X2	Υ
0	0	0
0	1	1
1	0	1
1	1	0

NAND:

X1	X2	Υ
0	0	1
0	1	1
1	0	1
1	1	0

NOT:

X	Υ
0	1
1	0

Result: Thus the Boolean operation using Labview is performed.

SUM OF 'n' NUMBERS USING 'FOR' LOOP

Aim: To find the sum of 'n' numbers using FOR loop.

Algorithm:

Step 1: Create blank VI.

Step 2: Right click on the block diagram panel, select program, go to structures and select a FOR loop.

Step 3: Right click on the border of the FOR loop and select add shift register; borders are converted into shift register.

Step 4: Using wiring operations required connections are given in the block diagram.

Step 5: Inputs are given in the front panel and the program is executed.

Input:

Output:

output 55

Result: Thus the sum of 'n' natural numbers using FOR loop is performed in Labview.

FACTORIAL OF A GIVE NUMBER USING FOR LOOP

Aim: To perform the factorial of a given number using FOR loop.

Algorithm:

Step 1: Create blank VI.

Step 2: Right click on the block diagram panel, select program, go to structures and select a FOR loop.

Step 3: Right click on the border of the FOR loop and select add shift register; borders are converted into shift register.

Step 4: Using wiring operations required connections are given in the block diagram.

Step 5: Inputs are given in the front panel and the program is executed.

Input:

Output:

output 720

Result: Thus the factorial of a given number is using FOR loop is performed in Labview.

SUM OF 'n' NATURAL NUMBERS USING WHILE LOOP

Aim: To find the sum of n natural numbers using while loop.

Algorithm:

Step 1: Create blank VI.

Step 2: Right click on the block diagram panel, select program, go to structures and select a WHILE loop.

Step 3: The tunnels of the border are converted to shift register.

Step 4: Generate an adder and greater than equal to inside the WHILE loop.

Step 5: Using wiring operation required wiring is done in the block diagram panel.

Step 6: Input values are given in front panel and the output is generated.

Input:

Output:

output 66

Result: Thus the sum of n natural numbers using WHILE loop is performed.

FACTORIAL OF A GIVE NUMBER USING WHILE LOOP

Aim: To perform the factorial of a given number using WHILE loop.

Algorithm:

Step 1: Create blank VI.

Step 2: Right click on the block diagram panel, select program, go to structures and select a WHILE loop.

Step 3: Right click on the border of the WHILE loop and select add shift register; borders are converted into shift register.

Step 4: Using wiring operations required connections are given in the block diagram.

Step 5: Inputs are given in the front panel and the program is executed.

Input:

Output:

Output 720

Result: Thus the factorial of the given number using WHILE loop is performed.

SORTING EVEN NUMBERS USING WHILE LOOP IN AN ARRAY

Aim: To sort even numbers using WHILE loop in an array.

Algorithm:

Step 1: Create blank VI.

Step 2: Right click on the block diagram panel, select program, go to structures and select a WHILE loop.

Step 3: Create an array in the front panel and add numeric indicator to it.

Step 4: Add the numeric control in the front panel.

Step 5: Using wiring operations required connections are given in the block diagram.

Step 6: Inputs are given in the front panel and the program is executed.

20

Result: Thus the even numbers from the given set of numbers is sorted using WHILE loop in an array.

ARRAY MAXIMUM AND MINIMUM

Aim: To find the maximum and minimum variable from an array.

Algorithm:

Step 1: Create blank VI.

Step 2: Right click on the front panel \rightarrow modern \rightarrow array \rightarrow array matrix \rightarrow numeric control.

Step 3: Create four numeric indicators in the front panel for maximum variable, index, minimum variable and index.

Step 4: Using wiring operations required connections are given in the block diagram.

Step 5: Inputs are given in the front panel and the program is executed.

Input:

Output:

Result: Hence the maximum and minimum values of array were displayed using Labview.

BUNDLE AND UNBUNDLE CLUSTER

Aim: To bundle and unbundle a cluster.

Algorithm:

For bundling cluster:

- Step 1: Create blank VI.
- Step 2: Select numeric control, string control for inputs.
- Step 3: Select bundle operation from a cluster.
- Step 4: Create a new cluster add numeric indicator, string indicator and round LED.
- Step 5: Using wiring operations required connections are given in the block diagram.
- Step 6: Inputs are given in the front panel and the program is executed.

For unbundling cluster:

- Step 1: Create a new VI.
- Step 2: Create a cluster with numeric control, string and round LED.
- Step 3: Create numeric indicator, Boolean indictor and string indicator.
- Step 4: Using wiring operations required connections are given in the block diagram.
- Step 5: Inputs are given in the front panel and the program is executed.

Bundle cluster:

Input:

Bundled Output uisng Cluster

Unbundle cluster:

Input:

Output:

Result: Hence a cluster is bundled and unbundled using Labview.

FLAT AND STACKED SEQUENCE

Aim: To perform functions using flat and stacked sequence.

Algorithm:

Step 1: Create blank VI.

Step 2: Create flat and stacked sequence.

Step 3: Right click on the boundary and add sequence local connect adder with the boundary.

Step 4: Using wiring operations required connections are given in the block diagram.

Step 5: Inputs are given in the front panel and the program is executed.

Flat sequence:

Stacked sequence:

(i)

(ii)

(iii)

Flat sequence:

Result: Thus various functions using flat and stacked sequence using Labview was performed.

APPLICATION USING FORMULA NODE

Aim: To create a sine wave using formula node.

Algorithm:

Step 1: Create blank VI.

Step 2: Create formula node, waveform chart and waveform graph in the front panel.

Step 3: Connections are given as per the circuit diagram with necessary wirings.

Step 4: Inputs are given in the front panel and the program is executed.

Result: Thus a sine waveform is generated using formula node.

MEDIAN FILTER

Aim: To apply filtering technique for a given input signal.

Algorithm:

Step 1: Create a blank VI.

Step 2: In the block diagram panel go to signal processing and create a noise signal.

Step 3: Select any one input signal.

Step 4: Create median filter from signal processing block.

Step 5: Using wiring operations required connections are given in the block diagram.

Step 6: Inputs are given in the front panel and the program is executed.

Result: Hence filtering technique is applied on the input signal.

DISCRETE COSINE TRANSFORM

Aim: To perform discrete cosine transform on the given signal

Algorithm:

Step 1: Create a blank VI

Step 2: Generate a waveform from the signal processing block.

Step 3: Create a discrete cosine transform and waveform graph in the front panel.

Step 4: Using wiring operations required connections are given in the block diagram.

Step 5: Inputs are given in the front panel and the program is executed.

Result: Hence discrete cosine transform was performed on the given input signal.

CONVOLUTION OF TWO SIGNALS

Aim: To perform convolution of two signals.

Algorithm:

Step 1: Create a blank VI.

Step 2: Create two inputs and waveform graph.

Step 3: Apply FFT for the two inputs and give it to multiplier.

Step 4: In the receiver end IFFT is performed and the convolved output is displayed in the waveform graph.

Result: Hence two signals were convolved and the result is verified using Labview.

WINDOWING TECHNIQUE

Aim: To apply different windowing technique on the give input signal

Algorithm:

Step 1: Create a blank VI.

Step 2: Create Hanning, Hamming, Blackman, Chebyshev window on the block diagram panel.

Step 3: Generate an input waveform and create extract single tone for all the windows.

Step 4: Using wiring operations required connections are given in the block diagram.

Step 5: Inputs are given in the front panel and the program is executed.

Result: Hence the characteristics of various windows are performed using Labview.